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A THEORETICAL STUDY OF CAPACITIVE PLETHYSMOGRAPHY

J.-E. SIGDELL
Hoffmann-La Roche & Co., Ltd., Division of Biomedical Engineering, Basle, Switzerland

do

ry

ro

Y

X R o=

I ux o

Qs ~

[~

I

Il

([ [

[

I

I

[

I

1

Abstract—A theoretical analysis of capacitive plethysmography is given which is more accurate
than that from a previous study due to a more exact mathematical approach. As a result, it is
shown that capacitive plethysmography can, under certain circumstances, be quite inaccurate.
The mathematical techniques developed may, for each practical case, be used to improve

accuracy.

NOTATION

distance between electrode surfaces at right
angles to both

constant part of varying d

relative measure of a part of the perimeter p
(n = 1 for the whole perimeter) or of a part of
the axial length L

perimeter of the inner electrode surface in a
cross section at right angles to the axis

radius of a circularly cylindrical inner electrode
surface

radius of a circularly cylindrical outer electrode
surface

curvilinear co-ordinate along the surface of the
inner electrode in a plane through the axis
co-ordinate along the axis of the electrode sur-
faces

capacitance of the electrode arrangement
length of the axis of the electrode surfaces
radius of curvature of the inner electrode sur-
face in a plane through the axis

radius of curvature of inner electrode surface
in a cross section at right angles to the axis
resistance associated with Y

curve length along the surface of the inner
electrode in a plane through the axis

tissue volume within the inner electrode
interspace volume between the clectrode sur-
faces

admittance between connections to the electrode
arrangement

quadrature component of ¥

angle between the inner electrode surface and
the axis

distance between the inner electrode surface
and a thought infinitesimal layer between the
electrodes—also used for the varying part
d—d, of d

relative dielectric constant

absolute dielectric constant

8/d = relative value of &

p = resistivity of the tissue

dp = centre angle of circular segment associated with
the radius of curvature R ( by definition)

dy = centre angle of circular segment associated with
the radius of curvature R, (by definition)

) = angular frequency of current used to measure Y

A few additional notations are used in the Appendices and
are defined there.

INTRODUCTION

PLETHYSMOGRAPHY, the recording of volume
changes in tissue, is mostly used for the measure-
ment of variations in the volume of a segment of
a limb as an indirect measurement of total blood
flow through the segment or the mean perfusion
of its tissue. One way to measure such a volume
variation is to immerse the segment in a fluid and
measure the variation in the resulting displace-
ment. This is, for several reasons, still the method
of choice if the best possible accuracy is required
(direct transmission of volume change to trans-
ducer, direct calibration, etc., SIGDELL, 1968).
On the other hand, working with a liquid involves
a considerable complication of the practical
procedure and some other methods have there-
fore been developed. Of those, the most con-
venient to use are the mercury strain gauge
plethysmograph and the capacitive plethysmo-
graph. A theoretical study of the former has
been published (SiGDELL, 1969) and shows it to
have a limited accuracy. Here the latter method
now will be analysed.
447
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THE CAPACITIVE PLETHYSMOGRAPH

The principle of this plethysmograph, dev-
eloped originally by FiGar (1959a and b) and
further by HYMAN et al. (1964) and Woob et al.
(1970) is to use the surface of the limb as one elec-
trode of a capacitor, the other being a metal
cuff surrounding it. Obviously, the capacitance
of this arrangement varies with the volume of
the limb segment. It is here the purpose to develop
a mathematical theory and to briefly study how
accurately a volume change can be related to a
corresponding capacitance change. This has been
studied before (WILLOUGHBY, 1965), but, in the
present authors opinion, that study gives an
incorrect picture of the accuracy of the capaci-
tive plethysmograph. The possible errors esti-
mated by WiLLouGHBY (1965) are related
to the total capacitance instead of to the capaci-
tance change recorded (cf. WooD et al., 1970,
Appendix 2), which is the relevant quantity.
Furthermore a different mathematical approach
has been chosen, as it provides a more exact
theory.

A GENERAL FORMULA FOR THE
CAPACITANCE BETWEEN CYLINDRICAL
SURFACES AT A CONSTANT SEPARATION

Suppose a cylindrical surface with the peri-
meter p and length L to be surrounded by another
cylindrical surface of the same length, such that
the separation between them is everywhere
constant, measured at right angles to both.
If the inner surface is everywhere, convex, this
arrangement is always possible. If the inner
surface has concave portions, this is still
possible if its inward radius of curvature is
nowhere less in magnitude than the separation
between the surfaces (i.e., generally, if R, > — d
if R, denotes the radius of curvature and d
the distance so that R, > 0 outwardsand R, < 0
inwards). As is shown in Appendix 1, the peri-
meter of the outer surface is then p 4 2nd.
Now consider two surfaces at distances & and
8 -+ d8 from the inner surface. The assumption
that those are approximate equipotential sur-
faces is, in view of the result, justified by the
fact that the true field distribution is an extremal
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function to the field energy as a functional of
the set of fields. Hence a minor distortion of the
field causes a negligible change in capacitance
(compare the change of a function for a small
deviation from an inner point of extremity). The
capacitance of the layer between those two sur-
faces is given by

(1) s
C]  Leeo(p + 278)

hence the total capacitance is obtained by inte-
gration over the distance d between the surfaces:

¢ J4d

)

d

1 dé
- [5 o
Leeg J p + 278

0

or

2meen L

C = .
ln(1+2né)
p

€)

Here « is the relative and ¢, the absolute dielec-
tric constant. This expression reduces to the
well known formula for circular cylinders if
the inner (and. therefore the outer) surface is
circular. In Appendix 2 this expression is again
derived in a way based on the reasoning by
WiLLouGHBY (1965), showing consistency with
his work, so far.

The end effects of the capacitor arrangement
have not been considered as they could—and
should—be eliminated by a “guard-ring”
arrangement (see below).

EXPRESSION FOR NON-CYLINDRICAL

SURFACES AT VARYING SEPARATIONS
If axial field components are neglected, equa-
tion (3) will hold for each segment of length dx,
where x is the co-ordinate along the axis of the
surfaces, provided that in each plane through
this axis the distances from the axis to the sur-
faces vary slowly with x, i.e. the surfaces form
small angles with the axis at each point, and that
the distance d between the surfaces varies slowly
with x and is constant along the perimeter (semi-
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cylindrical arrangement). The neglect of field
components parallel to the surfaces is again
justified by the fact that the true field is an
extremal function to field energy as a functional
of the set of field distributions. The minor distor-
tion of the field through neglecting the axial
component in a case like this causes a negligible
change in capacitance. Therefore we obtain from
(3), applied to the segment dx, after integration:

L

dx
C = 27eey s )]
! In [1 + 27 le—jg}

where L is the length of the semi-cylindrical
arrangement,

A more general relationship can be derived
as follows. As a first step, consider non-cylindri-
cal electrodes with rotational symmetry (circular
cross-sections)—in a second step the full
generalization will be carried out. Consider
a segment of the electrode arrangement as
drawn in Fig. 1 in an axial cross-section. The

(R+{d)dp =ds+&d dg

axis
o ——

FiG. 1. An axial cross-section of a segment at rotational
symmetry. R = radius of curvature.
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curve length along the inner electrode (the
limb surface) is ds and its radius of curvature
in the plane through its axis is R. The capacitance
of the thin layer of thickness d d¢ is (equipoten-
tial surface assumption justified as before, the
distance d is assumed constant along p, i.e. in
each cross-section cut at right angles to the
axis)
1 1

= 0 7 (ds + édde) (p + 2n&d)

<(5¢) (5)

with notations from Fig. 1. First invert and
integrate with respect to £ from Oto 1:

11 1 n(p + 27d) ds

dC  eo2nds — pdp  p(ds + ddg)

®

Invert again and integrate with respect to s
from O to S, the total curve length along the
inner electrode:

s 1P

27R
C = 2mee f —— s,

*J 1 R+ 2md)
PR +d)

as R = ds/dg. For R > d we may write this as

M

s ip_
C = 21ree0 f ZR dds. (8)
In ( )

1+ 27—
p
In general, p, R and d vary with s. This expression
reduces further to (4) if R > p and x > s. In fact
it shows (4) to be valid also for a (nearly)
conical arrangement—if x is substituted by s
and L by S—or, more generally, for an arrange-
ment with rotational symmetry and much less
curvature in an axial direction than in a corres-
ponding cross-section.
Now, as a final step towards a general expres-
sion, allow for an arbitrary cross-section. We
should then write, instead of (5),

R

1 1
d [—1] — ceo 7 (U5 + ddp) 0p + Ed )
a( ) ©)

dc
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dp

—p—"

FIG. 2. A cross-section of the “inner electrode’ at right
angles to the axis, no rotational symmetry. R, = radius
of curvature.

where d¢ is a sector of the cross-section as shown
in Fig. 2, having the p-contour’s local radius of
curvature R, as sides. (9) must then be integrated
over the p-curvature, which makes i vary from
0 to 2m. The expression corresponding to (6)
becomes, as R, = dp/d,

_ 1/R, — 1/R] ,
dC = eeojg [ds ———1 I T dR dp, (10)
1+ d/R

where generally also ds varies along p. To inte-
grate in the axial direction, we have to introduce
the angle o between the surface and the axis
and express ds as dx/cos a, as there is no general
S as an upper boundary of an integral like in (7).
Hence

L
C=eeof R— R, dp dx,

1+ d/R

RR,cosaln ] +d/R a1
where the closed path integral is taken over the
closed p-contour in a cross-section. In general,
R, R,, o. and d vary with p and x.

In the case R, R, > d we can considerably
simplify (11) by retaining only the first term in
the series expansion of the logarithm:

3 dpd
_ p dx
C_eeofff;dcosd
[s]

For many applications, the condition for this
simplified expression should not be difficult to
realize in practice.

(12)
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THE INTERSPACE VOLUME BETWEEN THE
TWO SURFACES AND ITS RELATION TO
CAPACITANCE

Referring to Figs. 1 and 2, we find for the inter-
space volume V;:

A3V, = d dé&(ds + £d de)(dp + éd dy),
or, as R = ds/dg and R, = dp/dy:

1{d d 1 42
+32lx %) FIrm] PO
14

from integrating (13) between £ = 0 and ¢ = 1.
Again we set dx = ds cos a:

= [ [+ 4 2)

(13)

1 42
If R, R, > d this reduces to
L
Vi= f § cos a dp dx, (16)
0
or, with (12), for a constant d:
€€
C = d_20 Vi, (17)

i.e. an ideal, linear relationship between capacit-
ance and volume.

For a small change Ad in d, corresponding to a
change AV = —AV; in the volume V of the
limb segment, we have in the case R, R, > d if
cos a remains unchanged (this is a plausible
assumption, especially if a is small):

AV, = f fﬁ dp dx, (18)
COS a

1 A

AC = ——eeof cﬁ_dd dx, (19)
4]
or, for a constant d

€€g €€g

AC = — - AV, = - AV, 20)
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independently of the distribution of Ad along
the surface.

More exactly, we have
3 Ad 1 1
AV, = _ -
Y !j;cosa [1 +d(R+Rp)
d2
RR ] dp dx, @2n
2
AC = —
¢ “"]4;(“1 1+d/R)
1+dR
Ad.
ddpdx )

(1 _}_f) (1 —{—i)cos .
R R,

If d is still small, compared to R and R, we may
estimate the error in (20) by expanding (22) in
series and only keeping first order terms in d:

1 1
A - 4t
V= J§COSa[ (R+R,,)] dp dx,
(23)
< L
: A
AC=—€€0J§—d—[1—5d
COS a
1]
(_1 +L)] dp dx 24)
L R R, P ¢
or
AC = — =2 ay, [1 H
P EEA N7 cosa
d d
2
(R+R)dpdx] (25)

We see that if R and R, are constant, a linear
relationship between AV, and AC still holds,
as is also the case if Ad is constant. If they are
not constant, the relationship is no longer exactly
linear and furthermore depends, to some extent,
on the distribution of Ad over the surface. The
more Ad concentrates on parts of the surface
where R and R, take minimum values, the worse

are these effects. More general estimates are
obtained by taking additional terms of the
series expansion.

A general estimate of non-linearities and
errors cannot be made as variations in R andR,
have to be specified. A study of the simple case
of a circular cylinder is not of interest as there
are no errors in that case (as can also be verified
by applying known formulae directly). Note
that the case where R and R, are constant is
linear, even if the true relationship deviates from
(20), and is independent of the distribution of
Ad. Therefore a possible deviation from (20)
in this case is automatically compensated for
by means of a suitable method of calibration
(the most accurate calibration should be to
inject blood or some compatible solution, or
drain blood, to a known volume in the limb
segment with the circulation arrested). If this
is not done and the measurement interpreted
according to (20), (25) shows the error to pro-
duce an underestimation of AV by a factor

1/R + 1/R,

1—6d , .
1 + d(1/R + 1/R,)

(26)

THE RELATIONSHIP FOR A NON-
INFINITESIMAL CHANGE

We have hitherto studied the performance of
the system for an approximately infinitesimal
change Adin d. If a larger change is considered,
(18) still holds for the case R, R, > d, but (12)
gives for a constant 4 and a negligible change
incosa;

AC = dx

f fﬁ Ad .
“J T add+ Ad)cosa

[
+ (%)

o ad (Ad)2 ]
~ A =) — -,
2 [1 PRV

] dp dx
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where Ad is an appropriately defined mean
value of Ad.

In this case we find, due to the non-linearity
arising with a larger Ad, a certain effect from
the distribution of Ad. Especially, if we assume
Ad to occur only along 1/n of the perimeter,
as an illustrative example, we find (assume Ad
constant there and independent of x):

AV,

€€g
AC= — 2 A7, [1 —n

_I_nz(é.rﬁ):z_ ...:|
Vi ’

A physiologically plausible order of magnitude
of AV,;/V; is 102 for perfusion measurement
(from the initial derivative of the volume
change) and at most 10~! for, e.g., the study of
the capillary filtration coefficient (SIGDELL,
1968). We see that, under certain circumstances,
quite a large error may arise if ideal relationships
are assumed. For example, for n =15 and
AV/V, = 0-04 we find an error of about 20
per cent (for this case WILLOUGHBY, 1965,
determines an error of less than 0-8 per cent in
the total capacitance).

The study of errors can, of course, be extended
to more general cases by using (15) and (22), simi-
larly to the deduction of (25). This approach is
rather elaborate in general terms and there is no
reason to expect less error in such cases. There-
fore we may feel satisfied with the indication of
the accuracy of the capacitive plethysmograph
obtained above.

i

28)

PISCUSSION OF THE INFLUENCE OF
ERRORS IN THE SPACING d

We again assume the relationships (18) and
(19) to be valid with sufficient accuracy, i.e.
that d is sufficiently smaller than R and R,
and that cos a changes negligibly when the limb
segment expands. We further assume a small
error in the spacing d:

d=d, + 3, 29
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where d, is constant. We can then write, from

(19),

L
Ad § \%
AC = — 1—
¢ “offﬁdozcos«x( do+8) dp dx
V]

L
€€g 2eeq f§ 8 Ad
— oA €0 (084
do? Vit dy? (dy + 8 cosa

o

) dp dx. (30)

( 1 1 8
2d, + 8
If 8 <€ d,, this simplifies to

L
8 Ad
V, + 36—650 f ff)‘ dp dx.
dy cos a
1]
@31

As an example, this is applied to a circular cylin-
der where § is constant along 1/n of the perimeter
and zero otherwise, independently of x. In
the somewhat simpler case of (31) we then
obtain, with (18):

€€

dy?

AC =

(32)

This shows an error of about 8 per cent for
8/dy = 0-2 and n = 5* (WILLOUGHBY, 1965,
finds for the same 8/d, an error, in fotal capacit-
ance C, generally less than 2 per cent).

The same relationship (32) is easily derived,
using the same assumptions of relative magni-
tudes, directly from the known formula for a
cylindrical capacitor. In both cases angular
field components have been neglected with the
same justification as before, although this special
case with a discontinuous outer electrode makes
the situation somewhat more critical. However,
this case is only a simplified model of the more
natural case of a continuous 8 and this way of
studying it is still informative about the magni-
tude of the errors caused by 8.

The same relationship applies again if 8 is
constant along the perimeter and along 1/n of

* Equation (32) is actually a little too approximative for 8/d = 0-2; (30) gives an error of 6 per cent for this case, as
does a calculation from the known formula for a cylindrical capacitor, assuming a radius > d but not 8 < dj.
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the total length of the cylindrical arrangement,
but zero elsewhere.

In general, it can be stated that if 8§ < d,
the error is small as long as (18) and (19) apply
to a sufficient accuracy, as then 8 and d add their
contributions to capacitance in a linear manner.

ALLOWABLE SPACING

Firstly, the spacing must be sufficiently large
to allow for the expected expansion without
too much error in the determination of the
volume change. But there are also electrical
criteria for an allowable spacing.

The spacing d determines the basic capacitance
of the arrangement. Depending upon the fre-
quency used when evaluating the capacitance,
there is a lower limit for acceptable capacitance
values, i.e. a higher limit for acceptable d-values.

The admittance measured between the elec-
trodes has a rather complicated expression as
there is a distribution of resistance along the
inner “electrode” (the skin). This can be esti-
mated approximately using one resistance and
the basic capacitance in series:

1  w?Rz(C? . 1
“RirerReC T TR
(33)
Preferably, the measurement should be per-
formed in such a way that only the quadratic

component of Y is read (e.g., by phase-sensitive
detection):

Y

jwC
Y, —————, 34
14+ w?R2C? @9
Hence we should have
@R,C)* < 1 (39)

to avoid resistive errors.

More generally we should have a small effect
from the change in the resistance (under certain
circumstances the resistance may change less
than the capacitance), i.e. we should have

AC(1 — w*R,2C?) — 2R, w? C* AR,
(1 + w?R2C2)?

. AC(1 — w2 R2C?)

~ Jw (1 + w? Ryz C2)2 ?

M.B.E. 9/5—cC

AY, ~ jo

(36)

hom—

FiG. 3. Estimations of resistance and basic capacitance
in a circularly cylindrical model.

where the denominator does not necessarily
have to reduce to unity—if Y, is proportional
to AC but not influenced by AR, a suitable
method of calibration automatically compen-
sates for the fact that the denominator is not
unity. Equation (36) requires

(1 — w?R2C?) AC| > 2R,0*C3[AR,|. (37)

We remain “on the safe side” if we estimate the
resistance as sketched in Fig. 3. For circular
cylinders this gives (radii as defined in Fig. 3)

L pL?
A p— 38
R}' P 77'1'1 2 V ] ( )
C = 21mLee, 41TL€§0 ’ (39)
In fo In mro L
r V

where V is the volume of the limb segment. In
the case where (35) is valid (in order to simplify
the otherwise somewhat complex expression)
this gives with (37):

ro ln-? > 16 eeo(wpL?)?. (40)

t

An estimate of an upper limit ford =r, — 1y
is hence given by (40) in this case. It is interesting
to note that (35) leads to an expression just like
(40), with (38) and (39), except for the factor on
the right side, which is 4 instead of 16. Thus
(40) is a somewhat more severe condition than
(35), i.e. both are fulfilled if (40) is fulfilled.



454

Normally there is air as the dielectric, giving
e ~ 1. Measurements show (GEDDES, 1967)
that the mean resistivity p of the arm is about
330 Q cm along the muscle fibres and about
470 Q cm across them.

TISSUE SURFACE CONDITION

The penetration of the interelectrode electric
field into the tissue depends on the humidity of
the skin (surrounding humidity, perspiration)
and should also, to some extent, depend on the
perfusion of the skin (influenced by temperature
and by physiological and even psychological
factors). Therefore it is important that those
conditions do not change during the measure-
ment. Otherwise a change in, e.g., humidity
(caused, for example, by perspiration) may cause
a capacitance change which is interpreted as a
volume change. The safest precaution should
be to establish nearly 100 per cent humidity
(small penetration depth) in the skin by a proper
treatment. Perhaps electrode paste (to raise
conductivity) and a thin rubber sleeve (to pre-
vent loss through evaporation) might be used.

Evaporation from the skin may significantly
alter the dielectric constant of the air between the
electrodes. The formation of drops of perspira-
tion may also be measured as an irrelevant vol-
ume expansion. A thin non-compressing rubber
sleeve could prevent these influences as well.

END EFFECTS

These should be eliminated, together with the
capacitance from the outer electrode to the
exterior, by a combination of a ‘“guard ring”
and “hot shield’’ arrangement, as sketched in
Fig. 4.

CONCLUSION

It has been shown that the method of capaci-
tive plethysmography, under certain circum-
stances, may give rise to considerable errors.
On the other hand the method is handy and
simple to use. The mathematical basis given here
may possibly serve as a means for improving

J-E. SIGDELL
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FIG. 4. The use of “guard rings” and a “hot shield”.

the result by actually calculating the errors and
arranging to compensate for them. This is,
however, difficult in general terms and requires
a sufficiently accurate knowledge of the geometry
for each special case as well as of the distribu-
tion of the expansion over the surface of the
limb segment. Another possible use of this basis
may be to calculate an optimum spacing, opti-
mized in view of the increase in error with
increasing d for geometrical reasons as opposed
to the decrease in error with increasing d,
related to the magnitude of the expected actual
expansion. Such extensions of the theoretical
analysis have been avoided here in order to keep
the paper within reasonable limits. The purpose
has been to develop the basic methods for such
extensions and to briefly discuss the effects of
errors.

The aim of this study has been to analyse in
general terms the properties of a capacitive
arrangement of two conductive surfaces, closed
in a cross-section, and close to each other. The
forms of these surfaces are not prescribed, so that
thedescriptionis usablewithany practicalarrange-
ment. The study is not related to any special
capacitive plethysmograph, and is of a purely
theoretical nature. It is aimed at including a
basic approach to the analysis of this technique.
(The practical problem of mounting the elec-
trodes has not been discussed as it is not within
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the scope of this paper.) One approximation has
been made, because it was necessary for practical
reasons, in that the field components parallel
to the surfaces are neglected. This is justified
by reference to the theories of functionals
(functions of functions) and the calculus of
variations.

ADDENDUM
Note on two special cases

For most practical applications the radii of curvature
fulfil

R> R,
If in such a case 4 is chosen so that
d=kR, <R,

where k is a constant, we can write, from (21) and (22):
L
€co f § Addp dx
TR J R,2cosa

ecok?

_(1+k)ln2(1+k)o

AC =

Addp dx
d?cosa

and

Addp dx

AV =a +k)f§ cosa
Hence formulae essentially identical to (18) and (19) apply
in this case—the difference is only in the constants before
the integrals. This means that the study of the simplified
relations (18) and (19) in the paper can be generalized
also to the case when R > R,, d, but not necessarily
d € R,, if d is made to vary proportionally to R,. This is
an interesting and potentially important way to improve
the accuracy of the capacitive plethysmograph consider-
ably in many practical cases.

A further, but somewhat complicated, possibility to
improve the accuracy is to make d vary with R, as implicit-
ly given by

d d
R+ 2)m (1) =k

where k is again a constant. In this case we find from
(21) and (22), if R > R,, d:

“fﬁmi
fﬁcm (1

)dpdx

and

)dpdx
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that is

€€g
Tk

an ideal linear relation for approximately infinitesimal
increments. '

For non-infinitesimal increments the first of those two
improvements makes (27) hold for that case as well,
except for another constant before the integral, which in
many cases should be an improvement as the more
complicated general relation corresponding to (27), which
is to be derived from (11) and otherwise might apply
instead, is not expected to offer less error for other than
very special cases. Actually, the latter of the two cases
above can be such a very special case, as we here find,
corresponding to (27):

“fhwi #)

Ad[l 11(1 __)
P A L U

AC = AV(;

1—— “}dpdx

and

dp dx,

ffﬁcm( ) ‘+ﬁd+%)

from which we see that it is possible to get a better accur-
acy than in the case of (27), under suitable circumstances.

Making d vary as a more complicated function of
both R and R, can further extend the validity of the
simplified relations and reduce errors in still more
general cases.

A comment

The paper by Woob and HyMAN (1970) (read after
the completion of this study) is an important contribution
to capacitive plethysmography. The use of a flexible but
non-¢lastic electrode, spaced from the limb by an elastic,
insulating foam material, reduces errors from non-uni-
form expansion. In fact, their arrangement is equivalent
to an arrangement with a rigid electrode but subject to a
uniform expansion with the same volume change as with
the flexible electrode (even if the expansion is not uniform
in the latter case). The flexible electrode deforms slightly
so as to equalize the expansion. The influence of the
deformation should be of a second-order kind so that
the above theory could be applied by simply assuming a
uniform expansion and neglecting the effect of the change
of the form of the electrode.

The plethysmograph of Woobp and Hyman (1970) is,
though, still subject to the influences of the radii of curva-
ture. Such influences could be reduced by using a varying
spacing, as outlined above. It should be possible to do this
in a fairly general way by having a foam sleeve with
varying thickness, designed for an “average arm” or an
“average leg”. The elasticity of the foam material must,
of course, be such that it gives rise to a negligible pressure
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on the limb (especially as this varies with the expansion).
The theory presented could also be modified so that
it would apply for an elastic electrode.

APPENDIX 1

Consider a sector of the cross-section, formed by a
short piece of the electrode surfaces and their radii of
curvature—which meet in the same point under the
same angle dp as d is assumed constant-—as shown in
Fig. 5. With the notations from the figure, we have:

ds; = (R, + d) de,
dsy = R, do,
hence
ds, —ds; =dde
and, integrating over ¢,
: ..Yz — 5y = 2nd
as obviously
$dp = 2m.
This is easily checked by studying an arbitrary polygon as
the cross-section of the inner surface. The outer contour
then has straight parts of the same total length as the

inner contour but also circle sectors with a total angle of
2.

FiG. 5. Iltustration to the derivation of the relation
between inner and outer perimeters in Appendix 1.
R, =radius of curvature.

APPENDIX 2

To demonstrate the consistency, (3) will be derived
using the same reasoning as used by WILLOUGHBY (1965).
For notations, his work is referred to, in which curvi-
linear squares are introduced in the area between the
electrodes, in a cross section. If this area is divided in m
layers of n squares each, the capacitance is

C = e —
°m

J.-E. SIGDELL

according to a known method for graphical evaluation
of the capacitance. Now, for geometrical reasons, the
square sizes increase outwards such that

=7 = adx,

where d, is the side of a square in the layer number kand a

a constant, i.e.
dk = be"“,

the more exactly the finer the grid, i.e., the higher the
values of n and m. Here b is another constant and &k = 0,
., m. At the surfaces we have dy & p;/nand dm = p2/n,
where p; and p, are the perimeters of the inner and outer
surfaces respectively. We therefore have the spacing

m
dpz= f dk dk,
)
from which
n _ P2 — D1
" 4.mP
y 4!

As C = €<, nfm one finds (3) when the notations of this
paper are inserted (d instead of d,, p instead of p; and
p + 2nd instead of p,—see Appendix 1). WILLOUGHBY
(1965) uses the approximation nfm & +/(p1P)2/dp.. TO
further stress the consistency, we will show how this may
also be derived from the more exact relation above. We
haveforx ~ 1:

lnX=ln(1+\/x—1)—1n(1 +T;3c"1)=‘/"
~i-slr—5-2(ve -]
+o[(vx — 1)3] +o[(1 _T/l__)l‘] — (vx

1 1( 1)
—\/x)i d=—vx——7 +o(-*) +o(+),
if we put v/x = 1 + e with a small € one easily shows

%) (1 + o()] + o(e) + 0 (7;3) '

Here ordo symbols o have been used, o(y) is a notation
for a quantity which “approaches zero as y.”” Therefore,
too a good accuracy

Inx = (v’x -

1
Inx =~ +/x Vx
if x & 1. The error is of the order — €3/3 or — §3/24 if we
put x = 1 + 8. This approximation for In x leads to the
expression for n/m used by WILLOUGHBY (1965), as
p> % p, for a small d,,, when inserted in the more exact
relationship above.
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UNE ETUDE THEORIQUE DE PLETHYSMOGRAPHIE
CAPACITIVE

Sommaire—Une analyse théorique de pléthysmographie capacitive est présentée, qui est plus
précise que celle d'une étude antérieure, due & une approximation mathématique plus exacte.
Comme résultat, on montre que dans certaines circonstances, la pléthysmographie capacitive
peut étre assez imprécise, Les techniques mathématiques développées peuvent étre utilisées pour
chaque cas pratique, pour améliorer I’exactitude.

EINE THEORETISCHE UNTERSUCHUNG KAPAZITIVER
PLETHYSMOGRAPHIE

Zusammenfassung—Es wird eine theoretische Analyse kapazitiver Plethysmographie gegeben,
welche genauer, infolge exakterer mathematischer Anniherung, als die aus einer fritheren Unter-
suchung ist. Demgemiss wird darauf hingewiesen, dass, unter bestimmten Bedingungen,
kapazitive Plethysmographie recht ungenau sein kann. Die entwickelten mathematischen
Verfahren kénnen in jedem praktischen Falle zur Verbesserung der Genauigkeit verwandt
werden.
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