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ABSTRACT

The clearance of a dialyzer is calculated under the
most general conditions, allowing not only for a mixed
diffusive and convective mass transfer, but also for a vari-
ation along the membrane of the local ultrafiltration, the
membrane permeability and the sieving coefficient. The
study is then carried on for the case in which these are
all constant, to reach a relatively simple expression for
the influence of a low ultrafiltration rate on the clearance.
In this study, the permeabilities of the boundary layers
on both sides are treated as included in the (equivalent)
membrane. In an appendix, the stacking of membranes is
studied, giving a general law for the calculation of overall
permeabilities of a stack of individual membranes, re-
garded as one (equivalent) membrane (such as a physical
membrane with two boundary layers). Permeability data
for boundary layers are quoted from earlier works. In
other appendices, the variation of the local ultrafiltration
along the dialysis path is studied, as well as its effect on
the effective permeability of the membrane.

1. General calculation of the clearance of a
dialyzer

A segment of a dialyzer in countercurrent operation is
shown in Fig. 1. The effects of boundary layers are in-
cluded in the membrane. We allow for a variation along
the axial coordinate x of both ultrafiltration and mem-
brane permeability data.

In Fig. 1, the following notations are used:

k = permeability factor

L = active length

A = total membrane surface area
S = sieving coefficient

Cp = blood concentration of solute
Cq = dialysate concentration of solute
Qp = blood flow

Qg = dislysate flow
qu = axial density of the ultrafiltration flow
x = axial coordinate from the blood entrance end.
Below, the clearance is denoted by Q¢ and the total
ultrafiltration by Q. Furthermore, K = kAL and CpL =
Cp (L). Other notations are introduced in the text and all
are listed at the end of it.
Here, k, S and gy may be functions of x. Accordingly,
Cp Cg. Qp. Qg-and K are functions of x.
Mass balance yields

dCp
— ObF+ quCp = (K+Sqy)Cp — KC4g, m
dCq
— Qg . + quCd = (K+Sqy)Cp — KCy. (2)
X
Rearranged:
dCp
— Qp o [K—(1—S)qulCp — KCd, (3)
dCq
— Qg o = (K+Sqy)Cp — (K+qy)C4d- 4)
Furthermore:
dQp
—=—0u, Qp=0bo —)f qu dx, (5)
dx o
dQq X
——=—4du, 0d=Qdo —J qu dx=
dx 0
X
QdL+Qy —é qu dx, (6)

wherein Qpg = Qp(0), Qdo = Q4{0) and QgL = Qq(L).

A mass balance over the section from x to L gives, if
Cq(L) = O (the case Cq(L) # O is easily handled through
superposition of concentrations in the usual, known
manner),

QpCh — QpLChbL = QdCd. 7
°"  QpCp—0pLC
Cq = 20Cb— bl bL ()
Qq
With (3), one then finds
dc ‘a KQ
— 0p—2=|K(1- —2) — (1-S)qy [Cp+ oL cp. 9)
dx Qg Q4
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One may first solve the corresponding homogeneous
equation:

dCp Qp
—Qp —=|K(1-—} — (1-S)qy |Cp. (10)
dx Qq
Introducing
1 1 q
f(x) = Kl—————) — (1-S)—, (11)
0 Qg Qp
one finds
X
— éf(n) dn
Cp = pe . (12)

wherein § is a constant.
Applying the method of «varying the constant», (9)
can now be solved. Introducing

KQ
gix) = —2L (13)
QpQq
(9) can be written as
dCp N
— = —f({x)Cp — g{x)CpL, (14)
dx
with the solution
X 13
_é f(n) dn X <S) fm) dn
Ch=e Co—CbLYgE) e de| (15)
o s

Herein, Cq is a constant, which amounts to the blood
concentration of the solute at x = O, i.e., Cg = Cp(O).
Herewith, Cq is found from equation (7).

For calculating the clearance, one needs the outlet
concentration of the solute in the blood, Cp, which is
found through putting x = L in (15):

L g
§fndn L § f(n) dn
[o] S o
CoL |e te g€l e dg |=Co (16)
FIG. 1
x x+dx
Co BLOOD J Cp+dCp
o> > Qp-g,dx
Qe M #¥ (Q,-a,dx)(Cyy+dCy)

membrane

K(C,~C) P dx+5Cya,0x

Qdcﬂ*l: €€ (Qy—~a,dx){Cyq+dCy)
ag« |« 0y-adx
DIALYSATE
Cy Cq+dCy

# % mass flow » > liquid flow
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By definition, the clearance for zero inlet concentra-
tion in the dialysate is

C
Q¢ = Opo — QbL ot (17)
Co
from which, with (16) (after rearrangement):
Q
Qe = Qpo — ZL . (18)
L §  fln)dn
(S)[f(E) +g(Elle © dg

In most cases, qy is an almost linear function of x,
and pressures in blood and dialysate, resp., usually fall
almost linearly in the flow direction (cf. Appendix 1). One
may therefore put
qu = M —nx, (19)
wherein m and n are constants. One then finds, with (5)
and (6),

nx2
Qb=0b°—mx+7, (20)
nx2
deQdL+Qu——mx+T, (21)

referred to inlet flows Qpo and Qqy, resp.

Where applicable, the expressions (19) - (21) are,
therefore, to be inserted into f{x) and g(x). Furthermore,
one generally has (whatever the course of qy with x):
QpL = Qpp — Qy and Qg = Q4L + Qu.

Under the condition (A.19), which holds for most
dialyzers, one finds from Appendix 1:

WL 02 app + Apg) (22)
Qu~— 7 — X (App + Apd),
wherein App and Apq are the pressure drops in the
blood and dialysate pathways of the membrane section
of the device, resp., here taken as approximately constant
for various Q. This follows from (A.16) and the mean
transmembrane pressure
Ptm =~ Ptmo — "2 (App + Apg). (23)
wherein ptmo is the transmembrane pressure at x = O,
combined with (A.21) and (A.22) in Appendix 1. U is the
ultrafiltration coefficient of the membrane:
U= _Q—u , (24)

Ptm

which in most cases can be treated as a constant (in re-
ality, it varies somewhat with pim; for a hollow fiber
dialyzer by extremely small amounts and somewhat
more for compliant dialyzers).

The contribution from the second term in (22) is in the
order of = 40 ml/h, or = 0.7 miimin for typical dialyzers.
Integrated over the membrane from x = O to x = L, this
second term becomes zero. Therefore, this term may be
neglected in comparison with a Qp of 200 ml/min and a
Qg of 500 ml/min, which flow values constitute the stan-
dard operating condition for dialyzer evaluation. One
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may therefore write
Qy
qu = o (25)
which renders gy constant and considerably simplifies
the application of (18).
For the application in more general cases, it is advan-
tageous to first calculate

L g

f(n) dn

Lo _ S'[f(a) + g(&)] 5 dE, (26)
CphL © 7]€

which follows from (16), and then calculate Q¢ from (17).
In the case of a constant g, one gets the following:

Qp = Qpo — quX, (27)

Qd = Qdo — qux, (28)
K—(1-S K

Pl L T , (29)
Qpo — qux Qdo — quX
K(Qbo — Q) 1 1

gix) = 20— Ul - ). (30)

Qdo—Qbo Qbo—aux  Qdo— qux

Further limiting to the case of constant K and S, one
finds, using KL = kA and qyL = Qy,,

kA
Q
(1—2u ’
Co _ Qdo
c
bL = 14s
(1—2u, ’
QObo
L KA
oW
_0yg
kA Qpo—Q Qqgol
— c;’° = do d. (31)
bo Ydo +S
- ;J
QpolL

The integral in (31) may also be written as

@ kA
—(—+9)
_ Qu S Qqy (11— Qpbo "
LQpo Qdo
kA
Y
Q u
+ 922 dep, (32)
Qdo

L

E KA+SQ, kA—Qy

S = — )
e

wherein

O=1——0n- . (33)
Qbo

This integral cannot be generally solved in expres-
sions of elementary functions. For small Q,, in relation to
Qpo and Qdg, one may, however, approximate the in-
tegral in (31) as

Q Q

bo do dE, (34)
[0}
and, similarly approximating the first term in (31), one

finds

Qgo—0Q Q
ka—dobo_ (ggZu Hy
Co ~e Qdo Qpo Qho
CoL
Qbo+Qdo
o 2bo*Qdo
Qpo O
KA(Qpo — Qu) @ bo “do

KA(Qdo — Qbo) + Qu (SQdo + Qbo) |

_ kA(Qbo -_ Qu)
kA(Qdo — Qbo) + Qu (SQde + Qbo!

These approximations become exact as Qy — O.
Developing into a series in Qy and keeping only first-
order terms, one finds, for Q < < Qp, Qq,

(35)

Qdo—Q
c KA QdoQ bo
% (Qdo—Qbo)~Qdoe 1 *° —Qpo+
CbL
Qdo—Q
KA (;jo Obo 0
+Qu{1 fe do UYbo bo
Qdo
Q Q SQqo + Q
—(1-8) do _ “bo do bo |,
Qbo kA Qdo—Qbo

Qbo SQdo+Q
, Qbo Ao bo}' (36)

kA Odo—o. bo

The same expression is found through differentiation
of (35).

With (36), the variation of Cp with small values of Q
can be calculated. One herein has to consider the varia-
tion of kA with Q, which is discussed in Appendix 2.
From (A.28), one approximately has

2(koA)2

o 2koA® (37)
2koA + QS

wherein kg is the value of k at Qy = O. (37) is valid for a
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flat membrane arrangement with the surface area A, or
for a hollow-fiber dialyzer with the internal surface area
A. However, for a hollow-fiber dialyzer, the surface area
A in (36) is the actual surface area, which is the
logarithmic mean value of the internal and external sur-
face areas (cf. [3] and Appendix 2). Accordingly, a factor
expressing surface relations has to be entered in (37) for
a hollow-fiber dialyzer — cf. Appendix 2.

The clearance Qgg at Qy = O is found from (17) and
(35) (being exact at Qy = O):

Qgqo—0Q
—koA do bo
1—e QdoQbo
Qco=QboQdo , (38)
K Aodo—obo
e Qdo Qbo
[)
Qdo —Qbo &
from which one finds
Qdo Q Qpo Qgo—0Q
koA = do “bo _@ do co). (39)
Qdo—Qbo Qdo Qbo—Qco

Expanding (37) and the exponential function of kA in
series, one then finds for small values of Q
Co, Co Co

CbL CbL CbL(O)

Q Qdo—Q Qpo2
~ u f do—Yco (—?2)—1+S]+1}—
Qdo—Qbolobo—Qco Qdo

Qp
QuQcoS+-5 0

)

do .
Qbo Qdo—Qco

Qdo(Qpo—CQco) In (— ———)
Qdo Qbo—Qco

_ QuS  Qdo—Bho
2Qdo  Qbo—Qco

(40)

wherein Cp(0) is CpL at Qy = O.

The standard operating condition for a dialyzer is at
Qpo = 200 mlimin and Qdo = 500 mi/min (rather than
QgL = 500 ml/min, since the suction which creates ul-
trafiltration is usually generated by means of a controlled
dialysate pump placed at the outlet side of the dialyzer).
Under this condition, one finds

Co, Qu 500-Q¢q

Af ) =~ — (5—0.84) + 1|—
CpL 300 | 200—Q¢o

QuQcolS + 0.4 0.30Q,S
_ u CO( ) _ u (41)

500—Q¢o 200—Qco
500(200—0(;0) In (04-—-———
200—Qco

if Qco and Qy are inserted in ml/min.
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For small values of Q, the clearance according to
(17) is

CpL(O) CpLl0) |2 C
Qc~Qgo+Qy bé' +0bo[ bL ]A{ 0

), (42)
0 Co CbL

and, furthermore,
CbLlO)_ . Qo

. (43)
Co Qbo
One therefore finds
Qco
Q¢ =~ Qgo + Quil——2) +
¢ Qbo
Qw2 C
+ Qpo (1——2) A(2), (44)
Qpo  CbL

C
wherein A(C—°) is found from (40) or (41). With this,
bL

one can now calculate the variation af Q¢ with Qy for Qy
<< Qp, Qg. For this purpose, one may first define

Q
AQg = Qy (1——2) (45)
Qbo
and
Q2 C
AQg2 = Qpo (1 — —2) A=), (46)
Qbo  CpbL

AQg¢1 is the common estimate for the alteration of Q¢
with Q, since experimental studies show that CpL re-
mains practically unaltered under ultrafiltration.
Nevertheless, AQ¢2 is found to give a significant con-
tribution, as will be seen in the following.

With the relations so found, one can calculate ACp[
= CpL (0)-CpL. as well as AQgq1 and AQ¢2. The results
are shown for S = 0.5 and S = 1 under the standard
operating condition in Figs. 2 and 3. In Fig. 2, ACp| per
unit ultrafiltration (ml/min) is given in %. of CpL. In Fig. 3,
the negative sign of AQ¢2 is to be noted. It is seen that

FIG. 2
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ACpL/Qy falls in the range of 1-4%. of Cp|, but still AQ¢2
falls between —29% and —66% of AQg1 in practical
cases. This can be undestood from {45) and 46), in which
the factor Qy in AQc¢q1 is much smaller than the factor
Qpo in AQc2. Therefore, correction of clearance accord-
ing to (45) alone is obviously disputable. (Ranges given
are for values of S between 0.5 and 1 — smaller values
are rarely actual for typical solutes used in dialyzer
evaluation).

It is of interest to compare this with measured values,
even though measurements usually are to a relatively
high extent influenced by limitations in the accuracy of
the chemical analysis, since one has to deal with very
small changes in the output concentration (vide supra).
In spite of a relatively high scatter in individual figures
at various Qy even for the same dialyzer, values of
AQ¢/AQy estimated by means of linear regression are
given in Table 1, as determined at the HRC in Salt Lake
City in 1979 for three types of dialyzers. It is seen that
(41) and (44) fit these values exactly with plausible values
of S for the vitamin B12 clearances in all cases, whereas
the urea value is fitted only for «<Hemoflow C 0.8», but
then exactly at the actual value of S for urea convection
through Cuprophan, i.e., S = 0.98 ().

The use of (45) alone leads to much too high values
for vitamin By, but roughly acceptable values for urea.
The measured urea values in Table | should, however, be
taken with caution, since these are subject not only to
scatter to a higher degree than the values for vitamin
B12, but also to the influence of a non-ideal distribution
of the dialysate flow in the hollow-fiber bundle (especial-
ly pronounced in the «RDi» dialyzer) — the latter influ-
ence is considerably lower for vitamin Bq12. The lack of fit
for certain urea values is therefore likely to be caused by
such other effects on the measured figures. It would, of

course be of interest if an accurate study would be per-
formed, requiring a high number of measurements at
several ultrafiltration rates for a statistical reduction of
the effect of scatter. Measurements for urea here require
much higher accuracy in the chemical analysis, since Cp|
is 5 or 6 times higher for vitamin B2 than it is for urea®
This requirement is hampered by the fact that both the
Jaffé and the enzymatic methods of analysis are of com-
paratively low accuracy. Therefore, other methods should
be used.

It may be remarked that if the membrane permeability
is taken as constant, i.e., if ko is used in (36) instead of k
according to (37) [which corresponds to dropping the last
term in (40) and (41)], a poorer fit is reached (except for
the dubious urea values) in Table .

2. A special case

If Qpo = Qdo. the integral in (31) can be expressed in
elementary functions. One finds

c kA o, °

0 e —)n——% —

CbL Qs Qbo
kA Q

—— =), (47)
QyS Qpo

if S # 0. The case S = O gives (?)

C Q kA Q

=0 _ -4 1——|n(1——“]. (48)

CpL Qpo Qu Qpbo

(') here the surface-relation factor for hollow fibers, mentioned
in the text below (37), has been neglected, which is a
reasonable approximation.

(2) this is purely theoretical, for the mathematical interest only,
since a physical membrane with S = O could hardly have a
diffusive permeability.

 *for the same C,

TABLE |
Calculated values
Dialyzer Substance Measured values According to (41) and (44) According to (45)
AQg Measured value AQ¢ AQ¢
Qco fitted at S = atS =098 - atany S
Qy Qy Qq
Hemoflow C 0.8 urea 1204 0.252 0.98 0.252 0.398
vit. Bqg 239 0.494 0.815 — 0.881
Hemoflow C 1.0 urea 160.2 0.219 no fit 0.127 0.199
vit. Bqg 31.1 0.416 0.717 — 0.845
Hemoflow C 1.3 urea 164.6 0.142 no fit 0.113 0177
vit. Bg 41.0 0.497 0.827 — 0.795
Disscap 1.1 urea 161.5 0.230 no fit 0.123 0.193
vit. Byg 285 0.427 0.724 — 0.858
RDi urea 158.7 0.039! 0.2! 0.131 0.207
vit. B1g M1 0.385 0.709 — 0.795

Qgo is given in miimin at Qg = 200 mlimin and Qgq = 500 miimin
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The other extreme case S = 1 gives

Co kA

— =1+ : (49)
CoL Qbo

independent of Q.

3. Calculations of the membrane permeability

Above, the effects of boundary layers were included
in the (equivalent) membrane. For practical applications
of the above relations, one therefore needs estimates of
the permeabilities of those layers, as well as relations for
combined (stacked) membranes (since one may regard
the physical membrane and the two boundary layers as
three membranes stacked one upon the other).

In Appendix 3, a study of combined membranes is
undertaken. From this, one can calculate the effective or
equivalent overall permeability of any number of mem-
branes stacked together, regarded as one single mem-
brane.

In the actual case, the middle membrane is the physi-
cal one and its permeability data are therefore given. The
other two «membranes» are equivalent to the effects of
the two boundary layers on the blood side and on the
dialysate side, resp. For calculation of the overall per-
meability data, one needs expressions for the latter two
«membranes». In [2] a calculation is set up for the dialy-
sate side of hollow fibers (pp. 62-63), which is not car-
ried through to a final expression because of lengthiness.
However, the result of such a calculation is found to be

72Dq V
D= — (50)
r2 w
=(3—4t2 + t4 + 4In1)2, (51)
W =—719 + 1680 t2 — 1296 t4 + 368 16 — 338 —
—120(19—24t2 + 6t4) Int —
—288(9—412)In2t— 1152 In3 ¢, (52)

wherein kp is the permeability factor for the dialysate
boundary layer and

t N (53)
=r et

2 Ap
Here ry is the external radius of the wet (swollen) fiber
and Dy is the diffusion constant in the dialysate. N is the
total number of fibers in the bundle and Ap is the total
cross-section area of the bundle (including fiber in-
terspaces).

The blood-side boundary layer permeability is calcu-
lated by Babb et al. [4] to be

Db
0.25h

kg = (54)

for a flat membrane dialyzer, wherein h is the full
blood-channel height (from membrane to membrane)
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and Dy, is the diffusion constant in the blood. Klein et al.
[6] have adopted the same relation for a hollow-fiber
dialyzer, simply putting h = 2rq1, where rq is the internal
radius of the wet fiber. The theory in [2] allows for a
more exact calculation of this permeability for hollow
fibers. As a result,

D
kg = —2, (55)
2arq
wherein
1
a=2{—5 2 ——) (56)
p1 aw

Herein, pq is the first positive root of

— p10(0.421880 + w 0.0926930)10-7 + p8(0.566862 +

+ w 0.145445)10-5 — p6(0.450304 + w 0.144043)10-3 +

+ p4(0.0182292+w 0.00792101) — p2(0.25+w 0.1875) +
+w=0 (57)

(which is {83) of [2] somewhat corrected and extended).
w is here a parameter:

k'rq

Dp !
wherein k' is the total (combined) permeability of the
physical membrane and the dialysate boundary layer
(cf. Appendix 3).

The factor o in (55) is shown as a function of w in
fig. 4. It is found that 0.229 < a < 0.274, so that the value
0.25 of [5] is a reasonable approximation.

For a flat membrane dialyzer, [4] states that the per-
meability of the dialysate boundary layer would be neg-
ligible at high values of Qg, since then Q¢ levels off to
become almost constant, taken as a function of Qg.
However, as is seen from (38), this is no proof for neg-
ligibility of the dialysate boundary layer, since Q¢ levels

(58)
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off in any case, whether there is a significant boundary
layer resistance, or not. Furthermore, there is no reason
to expect that this permeability would be flow depen-
dent, since the permeability of the blood side boundary
layer is not! Instead, for reasons of symmetry, both
boundary layer permeabilities should depend on geomet-
ries (or: relative velocity gradients at the membrane),
and not on flow values. By analogy to (54), the dialysate
boundary layer should therefore have a permeability
Dd

kD=7 (59)
in a flat membrane dialyzer, wherein d is the height
of the dialysate channel. A is a coefficient which differs
from the value in (54) even at laminar dialysate flows,
since the dialysate channel has a membrane on one side
only, and a solid wall on the other, making for an un-
symmetrical concentration distribution across the chan-
nel. In many flat membrane dialyzers, the dialysate furth-
ermore flows in a complicated manner inside a mem-
brane support structure (such as a mesh structure or a
system of pyramidal protrusions from the solid wall),
making for a mixing in the dialysate through multiple
local turbulence. An estimate of A is therefore very dif-
ficult to find and no useful literature source is known to
the author.

Estimate of boundary layer permeabilities here given
are for overall effects, not considering their variations
with x. They furthermore apply to the case Qy = O and
therefore correspond to ko in (37) and Appendices 2 and
3. As a first approximation one may put S = 1 for
boundary layers, but more accurate values should be de-
rived from studies of mass transport in fluid channels
with flow components perpendicular to the x-axis — no
such study is known to the author.

In Appendix 3, the radial stacking of round, tubular
membranes (such as hollow fibers and associated
boundary layers) is also discussed. It is found that one
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has to refer the individual membrane permeabilities to a
specific radius, such as the inner radius of the fiber wall.
kg above is already referred to this inner wall radius rq in
the hollow-fiber case. kp above, is, however, referred to
the outer wall radius r in the hollow-fiber case and can
be referred to rq through multiplying by ra/rq (cf. Appen-
dix 3).

APPENDIX 1
Study of the ultrafiltration flow density

quix) is the axial ultrafiltration flow density and
quix)L/A is the ultrafiltration flow density per unit area,
assumed to be uniform, i.e., constant, in a direction per-
pendicular to x across the membrane.

In most cases, the pressures in the blood and dialy-
sate paths drop linearly in the flow direction at zero ul-
trafiltration. Correspondingly, we can define overall (R)
and differential (r) flow resistances:

Apg

szLrb:O—g, (A1)
Apg

Rq =Llrd= a , (A.2)

TABLE Il - TABLE OF VALUES USED FOR FIGS. 2 AND 3
Qpo = 200 mi/min, Q4o = 500 ml/min

Q¢o ACp/QyCp)ox1000 min/ml AQgo/Qy AQg¢q
mlimin
S=1 S=05 S=1 S=05 Qy
5 1.5149 3.2524 —0.2954 —0.6342 0.975
10 1.5296 3.2548 —0.2906 —0.6784 0.95
20 1.5585 3.2590 —0.2805 —0.5866 0.9
30 1.5865 3.2627 —0.2690 —0.5547 0.85
40 1.6135 3.2658 —0.2582 —0.5225 0.8
50 1.6394 3.2682 —0.2549 —0.4902 0.75
60 1.6640 3.2697 —0.2330 —0.4578 0.7
70 1.6872 3.2703 —0.2193 —0.4251  0.65
80 1.7087 3.2699 —0.2050 —0.3924 0.6
90 1.7282 3.2681 —0.1901 —0.3595 0.55
100 1.7454 3.2649 —0.1745 —0.3265 0.5
110 1.7598 3.2598 —0.1584 —0.2934 0.45
120 1.7708 3.2526 —0.1417 —0.2602 04
130 1.7775 3.2427 —0.1244 —0.2270 0.35
140 1.7788 3.2292 —0.1067 —0.1938 0.3
150 1.7729 3.2112 —0.08865 —0.1606  0.25
160 1.7571 3.1867 —0.07028 —0.1275 0.2
170 1.7264 3.1527 —0.05180 —0.09458 0.15
180 1.6709 3.1027 —0.03342 —0.06205 0.1
190 1.5632 3.0192 —0.01563 —0.03019 0.05
195 1.4579 2.9444 —0.007290 —0.01472  0.025
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wherein Apb is the pressure drop in the blood path over
the membrane and Apd the corresponding drop on the
dialysate side, both at Q,; = O. Blood and dialysate flows
at Qy = O are denoted by 0 and Od resp. Obviously,
from the previous ana|y3|s Ob = Qpo or the entran-
ce blood flow, and Od Q4o under usual operating
conditions [under special conditions one could have
of = Qg (L)].

In the general case, one then has a transmembrane
pressure

Ptm(X) = Ptmo —
— b § Qle) dt — g };od(g) dt, (A3)

where ptmo = Ptm{0O). Hence, from (5) and (6):
Ptm = Ptmo — X{rbQbo+rdQdo) +

x &
+ (rb+fd)(S) (S)QU(TI)dTl dg, (A.4)
dptm X
Ix =—rpQpo—rdQdo+(rb+rd) équ(n) dn, (A.5)
d2ptm
= (rp+rdlay. (A.6)
dx2
qy is proportional to ptm, and one can put
qu{x) = uZ pym(x), (A7)
wherein u is a constant. Hence, from (A.6)
d2q
; = u2 (rp+rq) au. (A.8)
dx

with the solution

xu 'V rp+rg —Xxu 'V rp+rd

qu=ae +be , (A.9)
wherein a and b are constants.
At x = O, one then finds, from (A.4) and (A.5),

qulO) = uZpymo =a + b, (A.10)
dqu(O) 2 Vit
™ —u4{rpQpo+rdQdo)=(a—bluVrp+rg, (A.11)
from which
'bQbo+rdQdo
2a =u2 —_— U —— A.12
u“ptmo Viorra ( )
rhQpo+rdQdo
2b = u2 fu—— A.13)
Pimo ¥ 4 T e ‘
It follows that
L
Qy =squdx =
o
1 LuVrp+rd —Lu Vrptrg
=———ae — be - (A.14)
b*rd -a+b)

and, since the mean transmembrane pressure is
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L L
Ptm = 1—Sptm dx = 2 Squ dx, (A.15)
Lo ull o
one finds
Qu = u2Lptm = Ubtm, (A.16)
or
U
u= —L— : (A.17)

wherein U is the ultrafiltration coefficient of the mem-
brane.
From (A.9), (A.12) and (A.13), one then can write qy

as
qu = U2ptme cosh (xu Vrp+rg) —
bQbo+rdQdo .
— U ————sinh (xu Vrp+rqd). A.18
VinFig ( bt+rd ( )

From this, it follows:

1. small values of Qy in relation to Qp and Qg, are pos-
sible only if

Lu Vrp+rd = VU(Rp+Rq) << 1 (A.19)

(assuming that the operating conditions are such that
qy = O for all x, since where qy < O dialysate could
otherwise be infused into the blood in case of a mem:-
brane leak), otherwise, pressure drops alone make for

a high ultrafiltration,

2. under this condition, qy is an approximately linear
function of x at all ultrafiltration values.

An evaluation of existing membranes at typical
dialyzer pressure drops indicates that the condition
(A.19) is nearly always fulfilled (except, e.g., for long
dialyzers with the Membrana HDF Cuprophan membrane
at more or less original permeability, i.e., without sub-
stantial permeability losses in the dialyzer manufacturing
procedure). Therefore, one can in most cases assume a
nearly linear function qu(x) for dialyzers, but usually
not for hemofilters and plasmapheresis filters.

Cases in which (A.19) does not hold, are such in
which the pressure drops alone produce a comparatively
high ultrafiltration. If (A.19) holds, a high ultrafiltration
can, of course, be generated by means of a sufficient
Ptmo: even then, qy(x) is a nearly linear function.

When qy(x) is nearly linear, one may write

qu = M —nx, (A.20)
in which, from (A.18}, (A.17), (A.1) and (A.2),
U
- pthO ) (A.21)

U ]
n= L—(rb0b0+ rdQdo} = 2 (App+Apd), (A.22)
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wherein App and Apq are the actual pressure drops.

Typical values of VU(Rp+Rg) for common dialyzers
are in the order of 0.1. Common constructions with high-
flux membranes may have values up to an order of 0.25.
Hemofilters and plasmapheresis filters have still higher
values.

APPENDIX 2
The membrane permeability with and without
ultrafiltration

As shown in [1], the total solute flux Jg through a flat
membrane under ultrafiltration may be written as (using
notations of the preceeding analysis)

qul <
Js = ko(C1—C2) + TSC (A.23)
wherein
T =C1—(C1—Ca) - L (A.24)
=C =g :
in which
LS
_qubs (A.25)
Ako

C1 is here the concentration at the inside of the mem-
brane and C» at the outside, in relation to the direction of
Jg — not including boundary layers.

Rearranging (A.23), one finds

qul

Js = k(C1—C2) + A SCq, (A.26)
wherein, for a flat membrane,

quLSs
ke 4 (A.27)

quLs

Ak

Ae 0 —1)

is the actual diffusion permeability factor at the inside of
the membrane (cf. Appendix 3).
For small values of qy;, one finds
2k2A
~—0 - (A28)
2koA + qylLS

which approaches kg as qy — O.

The expression {A.26) appears physically more ap-
propriate than (A.23), since k{Cq1—Cy) is the portion of
the solute extracted from the blood through diffusion,
and qyLSCq/A the portion extracted through convection.
Therefore, ultrafiltration reduces the effective diffusive
permeability (due to reduction of the concentration gra-
dient), but at the same time adds even more through
convection — as seen from the blood side. Inside the

membrane, the partition between diffusive and convec-
tive portions is gradually shifted.

From [2] (where the study is done for S = 1), one
finds for a hollow fiber, introducing the sieving coeffi-
cient S,

LS 1
P L (A.29)
A quLSr
ro  A1D
( 2 ) 1Pw -1
"

wherein Aq is the inner surface area of the fiber bundle
and Dy the apparent diffusion coefficient in the fiber wall
(as determined from external surface concentrations). rq
is the inner and rp the outer radius of the wet fiber.
At qy = O, the permeability fator is, according to [2],
D
ko = W (A.30)
riiln—=
n
Inserting this in (A.29), one finds
LS
k= —u> (A31)
qulks

A1ko

A1le 1)

As r1 — «, this expression approaches (A.27), since then
A1 — A (vide infra); at the same time, ko approaches
lim Dw

o , (A.32)
rq—> )
wherein & = ro—rq is the membrane thickness. (A.32) is
the relation for a flat membrane.

As is shown in [3], the inner surface area Aq of the
fiber bundle relates to its true surface area A as

A1 = 2Nxarql. (A.33)
A = 2Nmrml, (A.34)
ro —
m = ._2___r_1' (A.35)
r2
In—
n
Ar r
A= n 2 (A.36)
r2—n "

wherein N is the number of fibers in the bundle.

APPENDIX 3
Combination of membranes

In the case of zero ultrafiltration, the combined effect
of stacked membranes is easily found. The total diffusion
resistance (the inverted total permeability factor) is sim-
ply the sum of the individual diffusion resistances. There-
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fore, the combined effect of one membrane and the
boundary layers (treated as membranes) is found by
means of a simple process of superposition.

In the presence of ultrafiltration, things become a bit
more complicated. Nevertheless, a kind of superposition
process can be devised.

In Appendix 2, the solute flux Jg was written as

qul

Js = k(C1—Ca) + SCq, (A.26)

wherein the diffusive portion is expressed as seen from
the blood side. Analogously, one may rearrange to

qul
A

Jg = kg(C1—C2) + SCo, (A.37)

wherein the diffusive portion is expressed as seen from

the dialysate side. One here finds

quLs

Akg
kg=ke , (A.38)
with k according to (A.27), and notes that

quLS

kq—k = 3 A.39
d A (A.39)

i.e., the difference amounts to the convective permeabili-
ty factor, as seen from either side.
One may also rearrange as

Jg = C1kg — C2k, (A.40)
which expresses a kind of superposition of the diffusive

contributions from the respective other side. The con- -

tribution from the blood side on the dialysate side is then
expressed through Cqkq (as if Co were zero), and the
contribution from the dialysate side on the blood side is
expressed through =Cok (as if Cq were zero). This can be
developed into a superposition principle for stacked
membranes. The influence of convection is in (A.40) im-
plicitly included according to (A.39).

If two flat membranes are stacked together, one can
calculate the concentration C¢ at their common contact
surface (interface) by means of mass balance, equating
the output solute flux from the one membrane with the
input solute flux to the next, at that surface. This way,
one finds the overall diffusive permeabilities

k1k
k= — 2 (A.41)
k1 + kad '
and
kidkad
kg = ——o-, A.42
4=, +kad (Ad2)

where, again, sieving coefficients are implicitly included.
Indices 1 and 2 denote the individual membranes as
numbered from the blood side.
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If v membranes are stacked, numbered 1, ...v from
the blood side, the following formulae can be shown to
be valid by means of induction (treating the stack from 1
to v—1 as one membrane and membrane v as the other):

k=— TII kj, (A.43)
2 j=1

kd = 1k kid. (A.44)
z j=1

wherein

s 1_—1-1 K + v2—1(v—|—1 a) =
i=1 ] i=1 j=1 Jrv—i-H Jd)

v i—1 v .
=2,(m% 1, ki ) (A.45)

with the convention

#I zi=1 A.46)
j=ut+1 (
for all u (especially for p = O and p = v) and any z;.
From this, one finds, with (A.39),
kg—k =+ (ﬂ kig— 11 k')— qulS (A47)
d =1 99T 59T A '

for the total sieving coefficient S.

With (A.39) for the individual membranes, the differ-
ence between the products in (A.47) can also be written
as

I kig— 1k
—qdd T2

quLl v /i1 v
= = (,H ki . I kjd Si), (A.48)

A i=1\j=1" j=i+1

so that one finds

LI (iﬁ1k- m K s-) (A.49)

T3 == i 9 '
Applying (A.38) in an analogous manner, one finds

L v S LS’
LI . (A50)

kd A =1 koj Ako
—=e =e
k
so that
s’ v Sj
—=3 — (A.51)
ko =1 koj

Hence, for qy # O, S’ # S in the general case. They
become equal in the limit as qy — O. Therefore, we can
approximate S =~ S’ for small qy, from which we con-
clude that {A.27) and (A.28) can be approximately applied
for the total parameters of the stack of membranes, i.e.,
for the equivalent parameters, taken as one membrane.
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Hence for small values of Q, we can use (A.51) and
(A.27) or (A.28) with

1 v 1

= Y — (A.52)
ko =1 koj

which is the relation for the total permeability factor at
zero ultrafiltration.

In the case of tubular membranes stacked radially,
things are a bit more complicated still, since the areas of
the contact surfaces are no more the same. The solute
flux Jgrq, referred to the inner radius rq of the tubular
membrane, is, according to Appendix 2,

L
Jer1 = k(C1—Ca) + q% SCq = kgC1 — kCa, (A.53)
with k according to (A.31). From this one finds
LS
j\”—k (A54)
kg=ke 170
and
LS
kg—k = U2 (A.55)
A1

wherein k and kq are both referred to r1.
The solute flux at any other radius in the mem-
brane is

.
Jor= r—1JS,1' (A.56)

as follows from the taw of continuity. The diffusive per-
meabilities change accordingly and become, as referred
tor,

]
k= —k (A.57)
r

n
kdr = - kd- (A.58)

If one stacks v membranes radially, having the inner
radii rq, r2, ... ry, one finds in the same manner as above:

1 v
kr1 =— IL Kjrj, (A.59)
2 =
ka1 =— I K (A60)
n=— idri .
dr T j=1 jdri
and
v i—1 v
== (.H kjrj . 11 kjdrj) (A.61)
i=1\j=1 j=i+1

with the convention (A.46). Furthermore:

1 v i—1
- - i 1 kgr), A.62
Sn=3 i§1(s'r' i3y M d ’) (A62)

(A.63)

1 kojrj

whereas (A.51) remains unchanged. Again, for small Qy,
one may as an approximation use (A.51) and (A.27) or
(A.28) with (A.63).

In (A.59) — (A.63) and in (A.51) for tubular mem-
branes, kj and kjq are always referred to rj.

Remark concerning modelling of mass trans-
port in membranes and related experimental
studies

It seems that equation (A.40) should be in a suitable
general form for description of mass transport through
membranes. Various studies have been published, such
as in [1] and [6], giving different results for C in (A.23).
Equation (A.40) applies in both cases, but with different
flow dependencies for k and kg, as functions of the ul-
trafiltration flow. It should be possible to separately’
measure k and kg (or to separate them out from sets of
measurements), using suitable experimental arrange-
ments, as functions of qy. In this way, theories on
transport in membranes could be experimentally tested
in a relatively strict manner.

Note

In physical membranes, the concentration usually
suddenly jumps from the outside value in the immersing
liquid just at the membrane surface to a different inside
value in the membrane, just inside the surface. However,
one may calculate with equivalent values of concentra-
tions in the membrane, neglecting such jumps and equat-
ing outside and inside concentrations at the membrane
surface. As a result, apparent values of diffusion con-
stants and permeabilities apply, relating to concentration
values outside the membrane, just at its surfaces. Con-
centrations, permeabilities and diffusion constants above
which pertain to membranes are to be understood as
such equivalent or apparent values. It is anyway the ap-
parent permeability which is measured in the first place,
when evaluating membranes — true permeabilities have
to be estimated from estimates of inside concentrations,
usually difficult to measure.

Notations

a = a constant

A = total membrane area

Aq = inner membrane area of hollow-fiber bundle
Ap = total cross-section area of hollow-fiber bundle
b = constant

C = mean concentration in membrane

Cp = blood concentration in solute

Chp =Cpatx=L

Cpf0) = CpLatQy =0

Cq = dialysate concentration of solute

Co = Cpatx=0

Cq = concentration at inside of membrane under

solute flux Jg
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concentration on outside of membrane under
solute flux Jg

dialysate channel height

diffusion constant in blood

diffusion constant in dialysate

apparent diffusion constant in hollow-fiber wall
function defined by (11)

function defined by (13)

blood channel height

summation index

multiplication and summation index

solute flux through membrane

solute flux through hollow-fiber wall at radius r
solute flux through hollow-fiber wall at radius rq
permeability factor as seen from blood side of
membrane

combined permeability factor for membrane
and dialysate boundary layer

permeability factor for blood boundary layer
permeability factor as seen from dialysate side
of membrane

permeability factor for dialysate boundary
layer

kg referred to radius r in hollow fiber

kq of membrane i or j

k of membrane i or j

k referred to radius r in hollow fiber

katQy, =0

ko of membrane j

kAL

active length of dialyzer membrane

a constant

a constant

number of fibers in hollow-fiber bundle
variable in (57)

transmembrane pressure

mean (over x) transmembrane pressure

ptm atx = 0

first positive root of equation (57)

axial density of ultrafiltration flow

blood flow

QpatQy =0

Qpatx =0

Qpatx=1L

dialyzer clearance

dialysate flow

QgatQy =0
Qgatx=0
Qgatx=1L

ultrafiltration flow

radius in hollow fiber (from center)
differential blood-path flow resistance
differential dialysate-path flow resistance
mean radius of fiber wall

inner radius of fiber wall

outer radius of fiber wall

blood-path flow resistance
dialysate-path flow resistance

sieving coefficient

S of membrane i or j

a kind of sieving coefficient defined by (A.50)
parameter defined by (53)

factor in (A7)

ultrafiltration coefficient of membrane

xss <

N

>
o
Q
i

function defined by (51)

parameter defined by (58)

function defined by (52)

axial coordinate, i.e., coordinate in blood-flow
direction along membrane

variable in (A.46)

W

parameter defined by (56)

a constant

membrane thickness

change or deviation in subsequent quantity
pressure drop over L in blood path

= AppatQy =0

pressure drop over L in dialysate path

= ApgatQy =0

integration variable

parameter defined by (A.25)

coefficient in (59)

parameter in (A.46)

number of stacked membranes

integration variable

sum defined by (A.45) for flat membranes and
by (A.61) for hollow-fiber membranes
integration variable

value defined by (33)

I I T T

[e]
|

1 T T T |

Reprint requests to:

J.E. Sigdell, Mediconsult
Gellertstrasse 72

CH-4052 Basel, Switzerland

This address is no more valid!

REFERENCES

1.

Villaroel F., Klein E., Holland F.: Solute flux in
hemodialysis and hemofiltration membranes. Trans.
ASAIOQ, Vol. 23, 225-233, 1977.

. Sigdell J.E.: A mathematical theory for the capillary

artificial kidney. Hippokrates, Stuttgart, 1974.

. Sigdell J.E.: Comparison of hollow fiber dialyzers, Ar-

tificial Organs, Vol. 5, Nr. 4, 401-409, 1981 (Addendum
in Vol. 6, Nr. 1, 77-78, 1982).

. Babb A.L., Maurer C.J., Popovich R.P., McKee R.E::

The determination of membrane permeabilities and
solute diffusivities with applications to hemodialysis.
Chem. Eng. Progress, Symposium Series (A.l. Chem.
Eng.), Vol. 64, No. 84, 59-68, 1968.

. Klein E., Holland F., Lebeouf A., Donnaud A., Smith

J.K.: Transport and mechanical properties of
hemodialysis hollow fibers. J. Membrane Science,
Vol. 1, 371-396, 1976.

. Kedem O., Katchalsky A.: Thermodynamic analysis of

the permeability of biological membranes to non-elec-
trolytes. Biochim. Biophys. Acta, Vol. 27, 229-246,
1958.

pp- 361-372 (Wichtig Editore Srl, Milano). Just a few minor clarifications have been inserted.



